Appendix B

Using Java’s
Documentation
Comments

603



Appendix B: . Using Java's Documentation Comments

As explained in Module 1, Java supports three types of comments. The first two are the //
and the /* */. The third type is called a documentation comment. 1t begins with the
character sequence /**. It ends with */. Documentation comments allow you to embed

information about your program into the program itself. You can then use the javadoc utility
program (supplied with the JDK) to extract the information and put it into an HTML file.
Documentation comments make it convenient to document your programs. You have almost

certainly seen documentation generated with javadoc, because that is the way the Java API

library was documented by Sun.

The javadoc Tags

The javadoc utility recognizes the following tags:

Tag Meaning

@author Identifies the author of a class.

{@code} Displays information as-is, without processing HTML styles, in code font.
(Added by J2SE 5.)

@deprecated Specifies that a class or member is deprecated.

{@docRoot} Specifies the path fo the root directory of the current documentation.

@exception Identifies an exception thrown by a method.

{@inheritDoc} Inherits a comment from the immediate superclass.

{@link} Inserts an in-line link to another topic.

{@linkplain} Inserts an in-line link to another topic, but the link is displayed in a plain-text font.

{@literal} Displays information as-is, without processing HTML styles. (Added by J2SE 5.)

@param Documents a method’s parameter.

@return Documents a method's return value.

@see Specifies a link to another topic.

@serial Documents a default serializable field.

@serialData Documents the data written by the writeObject( ) or writeExternal( ) methods.

@serialField Documents an ObjectStreamField component.

@since States the release when a specific change was infroduced.

@throws Same as @exception.

{@value} Displays the value of a constant, which must be a static field.

@version Specifies the version of a class.




Java: A Beginner's Guide 605

Document tags that begin with an “at” sign (@) are called stand-alone tags, and they must
be used on their own line. Tags that begin with a brace, such as {@code}, are called in-line
tags, and they can be used within a larger description. You may also use other, standard
HTML tags in a documentation comment. However, some tags such as headings should not
be used, because they disrupt the look of the HTML file produced by javadoc.

You can use documentation comments to document classes, interfaces, fields, constructors,
and methods. In all cases, the documentation comment must immediately precede the item
being documented. When you are documenting a variable, the documentation tags you can
use are @see, @since, @serial, @serialField, {@value}, and @deprecated. For classes, you
can use @see, @author, @since, @deprecated, @param, and @version. Methods can be
documented with @see, @return, @param, @since, @deprecated, @throws, @serialData,
{@inheritDoc}, and @exception. A {@link}, {@docRoot}, {@code}, {@literal}, or
{@linkplain} tag can be used anywhere. Each tag is examined next.

Using Java's Documentation Comments =@

@author

The @author tag documents the author of a class. It has the following syntax:
@author description

Here, description will usually be the name of the person who wrote the class. The @author
tag can be used only in documentation for a class. You will need to specify the -author

option when executing javadoc in order for the @author field to be included in the HTML
documentation.

{@code]}

The {@code} tag enables you to embed text, such as a snippet of code, into a comment.
That text is then displayed as-is in code font, without any further processing such as HTML
rendering. It has the following syntax:

{@code code-snippet}

@deprecated
The @deprecated tag specifies that a class or a member is deprecated. It is recommended that

you include @see or {@link} tags to inform the programmer about available alternatives. The
syntax is the following:

(@deprecated description



606  Appendix B: Using Java's Documentation Comments

Here, description is the message that describes the deprecation. The @deprecated tag can
be used in documentation for variables, methods, and classes.

{@docRoot}

{@docRoot} specifies the path to the root directory of the current documentation.

@exception

The @exception tag describes an exception to a method. It has the following syntax:
(@exception exception-name explanation

Here, the fully qualified name of the exception is specified by exception-name, and
explanation is a string that describes how the exception can occur. The @exception tag
can only be used in documentation for a method.

{@inheritDoc}

This tag inherits a comment from the immediate superclass.

{@link}

The {@link} tag provides an in-line link to additional information. It has the following syntax:
{@link pkg.classt#member text}

Here, pkg.class#tmember specifies the name of a class or method to which a link is added, and
text is the string that is displayed.

{@linkplain}

The {@linkplain} tag inserts an in-line link to another topic. The link is displayed in plain-text
font. Otherwise, it is similar to {@link}.

{@literal}

The {@literal} tag enables you to embed text into a comment. That text is then displayed
as-is, without any further processing such as HTML rendering. It has the following syntax:

{@literal description}

Here, description is the text that is embedded.



Java: A Beginner's Guide 607

@param

The @param tag documents a parameter to a method. It has the following syntax:
@param parameter-name explanation

Here, parameter-name specifies the name of a parameter to a method, or the name of a type
parameter to a class. The meaning of that parameter is described by explanation. The @param
tag can be used only in documentation for a method, a constructor, or a generic class.

Q@return

The @return tag describes the return value of a method. It has the following syntax:

@return explanation

Using Java's Documentation Comments =@

Here, explanation describes the type and meaning of the value returned by a method. The
@return tag can be used only in documentation for a method.

@see

The @see tag provides a reference to additional information. Its most commonly used forms
are shown here:

(@see anchor
@see pkg.classttmember text

In the first form, anchor is a link to an absolute or relative URL. In the second form,
pkg.classttmember specifies the name of the item, and fext is the text displayed for that item.
The text parameter is optional, and if not used, then the item specified by pkg.class#member is
displayed. The member name, too, is optional. Thus, you can specify a reference to a package,
class, or interface in addition to a reference to a specific method or field. The name can be
fully qualified or partially qualified. However, the dot that precedes the member name (if it
exists) must be replaced by a hash character.

@serial

The @serial tag defines the comment for a default serializable field. It has the following syntax:
@serial description

Here, description is the comment for that field.



608  Appendix B: Using Java’s Documentation Comments

@serialData
The @serialData tag documents the data written by the writeObject( ) and writeExternal()
methods. It has the following syntax:

@serialData description

Here, description is the comment for that data.

@serialField

For a class that implements Serializable, the @serialField tag provides comments for an
ObjectStreamField component. It has the following syntax:

@serialField name type description

Here, name is the name of the field, fype is its type, and description is the comment for
that field.

@since

The @since tag states that a class or member was introduced in a specific release. It has the
following syntax:

@since release

Here, release is a string that designates the release or version in which this feature became
available. The @since tag can be used in documentation for variables, methods, and classes.

@throws

The @throws tag has the same meaning as the @exception tag.

{@value}

{@value} has two forms. The first displays the value of the constant that it precedes, which
must be a static field. It has this form:

{@value}

The second form displays the value of a specified static field. It has this form:



Java: A Beginner's Guide 609

{@value pkg.class#field}

Here, pkg.classtfield specifies the name of the static field.

@version

The @version tag specifies the version of a class. It has the following syntax:
@version info

Here, info is a string that contains version information, typically a version number, such as 2.2.
The @version tag can be used only in documentation for a class. You will need to specify the

-version option when executing javadoc in order for the @version field to be included in the
HTML documentation.

Using Java's Documentation Comments =@

The General Form of a
Documentation Comment

After the beginning /**, the first line or lines become the main description of your class,
variable, or method. After that, you can include one or more of the various @ tags. Each @ tag
must start at the beginning of a new line or follow one or more asterisks (*) that are at the start
of a line. Multiple tags of the same type should be grouped together. For example, if you have
three @see tags, put them one after the other. In-line tags (those that begin with a brace) can
be used within any description.

Here is an example of a documentation comment for a class:

/**

* This class draws a bar chart.
* @author Herbert Schildt

* @version 3.2

*/

What javadoc Outputs

The javadoc program takes as input your Java program’s source file and outputs several
HTML files that contain the program’s documentation. Information about each class will be
in its own HTML file. javadoc will also output an index and a hierarchy tree. Other HTML
files can be generated.



610  Appendix B: Using Java's Documentation Comments

An Example that Uses
Documentation Comments

Following is a sample program that uses documentation comments. Notice the way each
comment immediately precedes the item that it describes. After being processed by javadoc,
the documentation about the SquareNum class will be found in SquareNum.html.

import java.io.*;

/**
* This class demonstrates documentation comments.
* @author Herbert Schildt
* @version 1.2
*/
public class SquareNum {
/**
* This method returns the square of num.
* This is a multiline description. You can use
* as many lines as you like.
* @param num The value to be squared.
* @return num squared.
*/
public double square (double num) {
return num * num;

* This method inputs a number from the user.

* @return The value input as a double.

* @exception IOException On input error.

* @see IOException

*/
public double getNumber () throws IOException {

// create a BufferedReader using System.in

InputStreamReader isr = new InputStreamReader (System.in) ;

BufferedReader inData = new BufferedReader (isr) ;

String str;

str = inData.readLine() ;
return (new Double(str)) .doublevalue() ;

/**

* This method demonstrates square().



Java: A Beginner's Guide 611

* @param args Unused.

. . . - B

* @exception IOException On input error. :
* @see IOException £
*/ 0
. E
public static void main(String argsl[]) : g
throws IOException Q)
{ © 5
SquareNum ob = new SquareNum() ; : "8
double val; s
€
System.out.println("Enter value to be squared: "); o
val = ob.getNumber () ; :D
2
val = ob.square(val); Ne)
- >
'8
System.out.println("Squared value is " + wval); e
} .o
D



